首页 经验 正文

新能源能源有哪些(有哪些新能源)

可燃冰

“可燃冰”的主要成分是甲烷与水分子,学名为“天然气水合物”(Natural Gas Hydrate,简称Gas Hydrate),又称“笼形包合物”(Clathrate),分子结构式为:CH4·H2O。天然气水合物是在一定条件(合适的温度、压力、气体饱和度、水的盐度、PH值等)下,由气体或挥发性液体与水相互作用过程中形成的白色固态结晶物质,外观像冰。由于天然气水合物中通常含有大量甲烷或其它碳氢气体,因此极易燃烧,被称为“可燃烧的冰”,燃烧产生的能量比同等条件下煤、石油、天然气产生的多得多,而且在燃烧以后几乎不产生任何残渣或废弃物,污染比煤、石油、天然气等要小得多。组成天然气的成分如CH4,C2H6,C3H8,C4H10等同系物以及CO2,N2,H2S等可形成单种或多种天然气水合物。形成天然气水合物的主要气体为甲烷,对甲烷分子含量超过99%的天然气水合物通常称为甲烷水合物(Methane Hydrate)。

天然气水合物的形成有三个基本条件,缺一不可。据专家介绍,首先温度不能太高;第二压力要足够大,但不需太大;0℃时,30个大气压以上就可生成;第三,地底要有气源。天然气水合物受其特殊的性质和形成时所需条件的限制,只分布于特定的地理位置和地质构造单元内。一般来说,除在高纬度地区出现的与永久冻土带相关的天然气水合物之外,在海底发现的天然气水合物通常存在水深300~500m以下(由温度决定),主要附存于陆坡、岛屿和盆地的表层沉积物或沉积岩中,也可以散布于洋底以颗粒状出现。这些地点的压力和温度条件使天然气水合物的结构保持稳定。从大地构造角度来讲,天然气水合物主要分布在聚合大陆边缘大陆坡、被动大陆边缘大陆坡、海山、内陆海及边缘海深水盆地和海底扩张盆地等构造单元内。据估计,陆地上20.7%和大洋底90%的地区,具有形成天然气水合物的有利条件。绝大部分的天然气水合物分布在海洋里,其资源量是陆地上的100倍以上。在标准状况下,一单位体积的天然气水合物分解最多可产生164单位体积的甲烷气体,因而是一种重要的潜在未来资源。

2、天然气水合物的储量

天然气水合物在世界范围内广泛存在,这一点已得到广大研究者的公认。在地球上大约有27%的陆地是可以形成天然气水合物的潜在地区,而在世界大洋水域中约有90%的面积也属这样的潜在区域。已发现的天然气水合物主要存在于北极地区的永久冻土区和世界范围内的海底、陆坡、陆基及海沟中。由于采用的标准不同,不同机构对全世界天然气水合物储量的估计值差别很大。据潜在气体联合会(PGC,1981)估计,永久冻土区天然气水合物资源量为1.4×1013~3.4×1016m3,包括海洋天然气水合物在内的资源总量为7.6×1018m3。但是,大多数人认为储存在汽水合物中的碳至少有1×1013t,约是当前已探明的所有化石燃料(包括煤、石油和天然气)中碳含量总和的2倍。由于天然气水合物的非渗透性,常常可以作为其下层游离天然气的封盖层。因而,加上汽水合物下层的游离气体量这种估计还可能会大些。如果能证明这些预计属实的话,天然气水合物将成为一种未来丰富的重要能源。

从化学结构来看,天然气水合物是这样构成的:由水分子搭成像笼子一样的多面体格架,以甲烷为主的气体分子被包含在笼子格架中。不同的温压条件,具有不同的多面体格架。

从物理性质来看(表1),天然气水合物的密度接近并稍低于冰的密度,剪切系数、电解常数和热传导率均低于冰。天然气水合物的声波传播速度明显高于含气沉积物和饱和水沉积物,中子孔隙度低于饱和水沉积物,这些差别是物探方法识别天然气水合物的理论基础。此外,天然气水合物的毛细管孔隙压力较高。

中国新能源网:http://www.newenergy.org.cn/

新能源产业介绍?现在的新能源有哪些?新能源产业主要是源于新能源的发现和应用。新能源指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。因此这里的开发新能源的单位和企业所从事的工作的一系列过程,叫新能源产业。

新能源分类

1、新能源按其形成和来源分类:

(1)、来自太阳辐射的能量,如:太阳能、水能、风能、生物能等。

(2)、来自地球内部的能量,如:核能、地热能。

(3)、天体引力能,如:潮汐能。

2、新能源按开发利用状况分类:

(1)、常规能源,如:水能、核能。

(2)、新能源,如:生物能、地热、海洋能、太阳能、风能。

3、新能源按属性分类:

(1)、可再生能源,如:太阳能、地热、水能、风能、生物能、海洋能。

(2)、非可再生能源,如:核能。

4、新能源按转换传递过程分类:

(1)、一次能源,直接来自自然界的能源。如:水能、风能、核能、海洋能、生物能。

(2)、二次能源,如:沼气、蒸汽、火电、水电、核电、太阳能发电、潮汐发电、波浪发电等。

现在的新能源有哪些?

就目前常见的有:太阳能、地热能、风能、海洋能、生物质能和核聚变能等。

石油,煤矿等资源将加速减少。核能、太阳能即将成为主要能源。

一下就具体每种能量细说:

太阳能:太阳能一般指太阳光的辐射能量。太阳能的主要利用形式有太阳能的光热转换、光电转换以及光化学转换三种主要方式。

细分就是:

1.太阳能光伏光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。

2.太阳热能现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力。

新能源产业介绍?现在的新能源有哪些?

3.太阳光合能:植物利用太阳光进行光合作用,合成有机物。

核能:核能是通过转化其质量从原子核释放的能量

具体方式:1.核裂变能:所谓核裂变能是通过一些重原子核(如铀-235、铀-238、钚-239等)的裂变释放出的能量

2:核聚变能:由两个或两个以上氢原子核(如氢的同位素—氘和氚)结合成一个较重的原子核,同时发生质量亏损释放出巨大能量的反应叫做核聚变反应,其释放出的能量称为核聚变能。

3:核聚变能:由两个或两个以上氢原子核(如氢的同位素—氘和氚)结合成一个较重的原子核,同时发生质量亏损释放出巨大能量的反应叫做核聚变反应,其释放出的能量称为核聚变能。

核能的利用存在的主要问题:

1:资源利用率低。

2:反应后产生的核废料成为危害生物圈的潜在因素,其最终处理技术尚未完全解决。

3:反应堆的安全问题尚需不断监控及改进。

4:核不扩散要求的约束,即核电站反应堆中生成的钚-239受控制

5:核电建设投资费用仍然比常规能源发电高,投资风险较大

海洋能:

海洋能指蕴藏于海水中的各种可再生能源,包括潮汐能、波浪能、海流能、海水温差能、海水盐度差能等。这些能源都具有可再生性和不污染环境等优点,是一项亟待开发利用的具有战略意义的新能源。

风能:

风能是太阳辐射下流动所形成的。风能与其他能源相比,具有明显的优势,它蕴藏量大,是水能的10倍,分布广泛,永不枯竭,对交通不便、远离主干电网的岛屿及边远地区尤为重要。

生物质能:

生物质能来源于生物质,也是太阳能以化学能形式贮存于生物中的一种能量形式,它直接或间接地来源于植物的光合作用。生物质能是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态或气态的燃料。地球上的生物质能资源较为丰富,而且是一种无害的能源。

地热能:

地球内部热源可来自重力分异、潮汐摩擦、化学反应和放射性元素衰变释放的能量等。放射性热能是地球主要热源。

氢能:

在众多新能源中,氢能以其重量轻、无污染、热值高、应用面广等独特优点脱颖而出,将成为21世纪最理想的新能源。氢能可应用于航天航空、汽车的燃料,等高热行业。

海洋渗透能:

如果有两种盐溶液,一种溶液中盐的浓度高,一种溶液的浓度低,那么把两种溶液放在一起并用一种渗透膜隔离后,会产生渗透压,水会从浓度低的溶液流向浓度高的溶液。

水能:

新能源产业介绍?现在的新能源有哪些?

水能是一种可再生能源,是清洁能源,是指水体的动能、势能和压力能等能量资源。广义的水能资源包括河流水能、潮汐水能、波浪能、海流能等能量资源;狭义的水能资源指河流的水能资源。

当然常见的,已经实现的是下面几种:

生物质能、太阳能、风能以及水力发电、地热能等的利用技术已经得到了应用。

还有一些不常见,或者很少听见的就是:可燃冰,煤层气,微生物。

可燃冰:这是一种甲烷与水结合在一起的固体化合物,它的外型与冰相似,故称“可燃冰”。可燃冰在低温高压下呈稳定状态,冰融化所释放的可燃气体相当于原来固体化合物体积的100倍。

煤层气:煤在形成过程中由于温度及压力增加,在产生变质作用的同时也释放出可燃性气体。从泥炭到褐煤,每吨煤产生68m3气;从泥炭到肥煤,每吨煤产生130m3气;从泥炭到无烟煤每吨煤产生400m3气。科学家估计,地球上煤层气可达2000Tm3。

微生物:世界上有不少国家盛产甘蔗、甜菜、木薯等,利用微生物发酵,可制成酒精,酒精具有燃烧完全、效率高、无污染等特点,用其稀释汽油可得到“乙醇汽油”,而且制作酒精的原料丰富,成本低廉。据报道,巴西已改装“乙醇汽油”或酒精为燃料的汽车达几十万辆,减轻了大气污染。此外,利用微生物可制取氢气,以开辟能源的新途径。

新能源产业介绍?现在的新能源有哪些?其实很多能源都是来自于太阳能,想海洋能,煤层气,微生物,风能,水能,都是有太阳能而来。只是他们之间转换了一下。