大规模新能源发电对电力系统稳定性的影响
风速、光照是随时变化的,风电机组、光伏电站的出力主要由风速、光照强度的大小决定,因此风电场、光伏电站的出力也是波动的。其不稳定性将会导致大规模风电、光伏电站并网之后,造成电网电压、电流和频率的波动,影响电网的电能质量。电网公司为消除不利影响,需要增加额外的旋转备用容量,从而增加了电网运行成本,也会间接影响新能源的发展。风电近几年发展尤为迅速,已经成为继火电、水电后的第三大电能生产形势,本文将着重介绍大规模风电机组并网对电网稳定性产生的影响。
大规模新能源并网对电网暂态稳定性存在影响。在新能源发电装机比例较大的电网中,由于改变了电网原有的线路传输功率、潮流分布以及电能质量等,因此,大规模新能源并网后电力系统的暂态稳定性会发生变化。比如,大规模风机并网系统,如果地区电网较弱,风电机组在系统发生故障后无法重新建立机端电压,风电机组运行超速失去稳定,将会引起地区电网暂态电压稳定性破坏[2]。
大规模风电机组并网电力系统,其中风电机组的低电压穿越能力将会对电力系统稳定性造成较大影响。低电压穿越(LVRT)指在风机并网点电压跌落的时候,风机能够保持并网,甚至向电网提供一定的无功功率,支持电网恢复电压,直到电网恢复正常,即成功“穿越”这个低电压区间。当风电在电网中所占比例较大时,若风机在系统发生故障时采取被动保护式解列方式,将会增加整个系统的恢复难度,甚至可能加剧故障,并最终导致系统其他机组全部解列。因此,在大规模风机并网的电力系统中,风电机组必须具备相应的低电压穿越能力.
从全球新能源汽车的发展来看,其动力电源主要包括锂离子电池、镍氢电池、铅酸电池、超级电容器,其中超级电容器大多以辅助动力源的形式出现。主要原因是这些电池技术还不完全成熟或缺点明显,与传统汽车相比不管是从成本上、动力还是续航里程上都有不少差距,这也是制约新能源汽车的发展的重要原因。
(1)电源
汽车上装有两个电源,即蓄电池和发电机。其功能是保证汽车各用电设备在不同情况下都能投入正常工作。
(2)电路保护装置
电路保护装置主要有熔断丝(保险丝)、继电器等,在电路中起保护作用。当电路中电流超过规定电流时即可切断电路,防止烧坏导线和用电设备。
车辆的种类虽然多,构造却大同小异。这应该说是标准化的功劳,也是大型生产流水线的需要。随着社会的发展、科技的进步和需求的变化,铁路车辆的外形开始有了改变,尤其是客车车厢不再是清一色的老面孔。但是它们的基本构造并没有重大的改变,只是具体的零部件有了更科学先进的结构设计。
一般来说,车辆的基本构造由车体、车底架、走行部、车钩缓冲装置和制动装置五大部分组成。
车体是车辆上供装载货物或乘客的部分,又是安装与连接车辆其他组成部分的基础。早期车辆的车体多以木结构为主,辅以钢板、弓形杆等来加强。近代的车体以钢结构或轻金属结构为主。